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Quantum revivals in the Jaynes-Cummings model 
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Max-Plsnck-Institut fur Quantenoptik, D-8046 Garching, West Germany 
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Abstract. We obtain an exact integral representation of the sum describing the evolution 
of the inversion of the two-level atom in the Jaynes-Cummings model when the field is 
initially prepared in a coherent state or a state generated by classical sources at non-zero 
temperature. We use the saddle point method to estimate the integrals. 

1. Introduction 

The Jaynes-Cummings model describes the interaction of a one-mode quantised 
radiation field with a single two-level atom in the so-called rotating wave approximation. 
The dynamics of this idealised model is described by the Hamiltonian 

H =~woS,+ tK (S+a+S_a" )+wa ia .  (1.1) 

The boson operators a' and a represent creation and annihilation operators of photons, 
and fermion operators S3, S,, S_  act in the space of atom states. Because these 
operators are coupled through the interaction term, the problem of solving the Heisen- 
berg equation is non-linear. Nevertheless, in a certain situation it is exactly solvable. 
It can be shown that the operator J = a'a +is, commutes with the Hamiltonian and 
the algebra of operators S,, S+a, S_a& is closed in the space spanned by the eigenstates 
of the operator J with the same eigenvalue. Closed solutions can be obtained if the 
initial state belongs to this space. If initially the electromagnetic field density matrix 
has only diagonal elements p n  = pnn and the atom is in the excited state, the evolution 
of the inversion (S, ( t ) )  and density matrix pn in the Schrodinger picture is given by 
the equations 

2- 

( S , ( t ) ) =  c pn(l-2Pntr)  
n = O  

where 

Interest in this model has been recently stimulated by the work of Eberly et a1 
(1980), Narozhny et a1 (1980) and Knight and Radmore (1982). They studied the 
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solution when the field is prepared in a coherent state. The solution provides evidence 
of remarkable behaviour in the inversion of the atom. Despite the fact that the field 
is initially close to classical, the evolution of the inversion has no simple Rabi 
oscillations. The envelope of these oscillations periodically collapses to zero. Revivals 
become broader and at longer time overlap each other. For a detailed discussion and 
graphical representation we refer readers to the work of Yo0 er a1 (1981). 

We would like to say something about the nature of the revivals. It has been said 
in many papers (see, e.g., Haroche 1984) that this phenomenon is due to the discreteness 
of the quantised electromagnetic field in the cavity while the Cummings collapse of 
the inversion of the atom appears for the stochastic classical field. Let us consider the 
narrowly distributed Gaussian field with probability of finding ‘energy’ n equal to 

(n - ti)’ 
P ( n )  = (772a)”’ (1.3) 

If we have a certain physical object which, when it interacts, oscillates with angular 
frequency n, the average value of its amplitude exp(int) is obtained by integrating with 
distribution P (  n): 

exp[ - ( ( ~ t ’ p ) ] .  (1.4) 
= 

The second term in (1.4) describes Cummings collapse of the oscillations. This collapse 
is due to the dispersion in the field energy. On the contrary, if we have a non-vanishing 
distribution for only two n we observe an interference pattern which is the simplest 
form of the revivals. These trivial remarks explain the origins of the behaviour of an 
atom interacting with the quantised field initially prepared in an n-localised state. The 
non-linearity of the interaction leads to the non-linear dependence on n of angular 
frequency dn. It involves some additional features like decreasing and broadening of 
revivals and eventually their complete overlapping for long interaction time. This last 
feature was studied in detail in the paper of Hioe et a1 (1983). 

Rydberg atom experiments in high Q superconducting cavities (Goy et a1 1983, 
Moi et a1 1983, Meschede er a1 1985) for the first time approach the conditions required 
to test the Jaynes-Cummings model for a single two-level atom and a single mode of 
the electromagnetic field (see also a review in Haroche (1984)). The experimental 
corroboration of the existence of the quantum revivals is extremely difficult. An 
important requirement is to properly prepare the atom-field system and then let it 
evolve freely for each incoming atom. The effects of cavity damping should also be 
considered (Barnett and Knight 1986). The velocity spread of the atoms greater than 
1% washes out the phase relationships responsible for the revivals. In Filipowicz et 
a1 (1986) an experiment is proposed in which the field is built up by the atoms. There 
is no necessity to prepare the field in the coherent state. However, it needs a high 
atom flux which technically contradicts their narrow velocity spread. 

In § 4 we study analytically a more realistic model of the interaction of an atom 
with the field generated by the classical sources at non-zero temperature. For the 
description of such a field see Barnett and Knight (1985). We show that the temperature 
corresponding to as many as one black-body photon in the cavity significantly decreases 
Cummings collapse time and broadens the revivals. 

The main calculations of the evolution of the atomic inversion reduce to the 
evaluation of the sum 
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An analytic closed-form approximation to the sum with Poissonian distribution p n  = 
e-'(ii"/n!) was first obtained by Narozhny et a1 (1980) by changing the sum to an 
integral and approximating the factorial n ! by the Stirling formula. The integral was 
calculated with the saddle point method. The replacement of the discrete sum by an 
integral is not correct because the phase information after the first collapse is blurred 
and no revivals occur. Nevertheless, taking into account all saddle points, the right 
result is obtained (Yo0 and Eberly 1985). These approximations are justified if the 
mean photon number ri is large enough. In our work we have made some further 
progress towards a closed analytic evaluation of (1.5). In § 2 we obtain an exact 
integral representation of the sum (1.5). The saddle point method applied in 5 3 to 
obtain approximate results is easier to handle for our integral than in the paper of 
Yo0 et a1 (1981). Additionally we are able to show why their approximation is so 
accurate. 

2. Integral representation 

First we observed that the power series 
x 

P ( t , h ) =  p,A"cos(&t) - 
n = O  

obeys a diffusion-type equation 

with boundary conditions 
X 

P(O,A)= p n A n = p ( A  

P,(O, A )  = 0 

n =o 

P ( 4  0) = P ( 0 ) .  

In order to solve equation (2 .2)  we perform a Laplace transformation of P ( t ,  A )  
in t :  

P(z, A )  = eCz'P( t ,  A )  dt. (2.3) 5: 
The transform P satisfies an equation 

a -  
a h  

z ' ~ ( z , h ) - z p ( A ) = - A - P ( z , A )  

with boundary condition 

It can easily be integrated. The result is 

P(z, A )  = I,* exp[-z2 ln(A/x)]p(x) dxlx.  
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For convenience we change the variable in (2.6) ln(A/x) = 77 and obtain 

P(z, A )  = z exp(-z*T)p(h e-') dq.  (2.7) lo' 
Function (2.7) exists only if Re(z2) > 0 and is not well suited to perform the inverse 
Laplace transformation. Nevertheless it can easily be continued analytically to an 
appropriate form. We introduce the function 

Fe(z,A)=-iz lom exp[(i+&)z*q]p(h e x p [ q ( i - ~ ) ] )  dT (2.8) 

which has poles with positive real part to the right and poles with negative real part 
to the left of the imaginary axis on the complex z plane. E is an infinitesimal parameter. 
This function exists on the imaginary axis so we can perform the inverse transformation. 
The integration along this axis leaves, on the LHS, only poles which have positive real 
parts. Thus the inverse Laplace transform of PE(z, m )  

icc 

P,(t, A )  =& jE(z ,  A )  err dz 
2 m  -,- 

is not the function P( t, A )  in the limit E + 0. It can easily be shown that 

l i m P , ( t , ~ ) = + E ( t , ~ ) = $  1 pnh" exp(itJ;;). 
a: 

E ' O  n =o 

After integration in (2.9) we obtain 

(2.10) 

1 "  t 
pe(4 A)=mIo exp[-t2((e-i)/4~]p(h e x p [ - ~ ( ~ - i ) ] ) - d q  4 h 3  

exp[(i-&)y2]p(A exp[(i- &)t2/4y2]) dy. (2.11) 
1 "  -- 

-hi lo 
Our final result 

" 
E ( t ,  A )  = 1 p n A n  e x p ( i t h )  

exp[(i - e)y2]p(A exp[(i - &)t2/4y2]) dy (2.12) 

can be proved directly when one uses the known integral 

lo" exp(-ay2- b/y2) dy = f ( ~ / u ) ' " e x p ( - 2 ~ )  

We can rewrite formula (2.12) by 

Re( a ) ,  Re( b )  > 0. 

(2.13) 

exp(iy2)p(h exp(it2/4y2)) dy (2.14) 

where P is the path which starts from zero in the fourth quadrant and tends to infinity 
in the first quadrant of the complex plane of y.  
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3. The coherent state 

In  this section we calculate the sum 
T 11 

U (  t ,  ti) = e-‘ - exp(it 6) 
n = O  n !  (3.1) 

which corresponds to the expectation value of the inversion of the atom when the field 
is initially prepared in the coherent state. With the help of formula (2.14) we have 
the integral representation of (3.1): 

exp{iy2+ fi[exp(it2/4y2) - 11) dy. (3.2) 

It is convenient‘ to introduce new scaled variables 7, 6: y = t(  ti^)"^, t = 27( ti)”’. The 
function U depends on 7 by the formula 

U ( T ,  ti)=2($)’” 1 e x p { t i [ i ~ ~ ’ + e x p ( i ~ / ~ ~ ) - l ] } d ~ .  
P 

(3.3) 

We use the saddle point analysis of the integral representation (3.3). The phase function 
is given by 

f ( 7 ,  t )= i7 t2+exp( i . r / t 2 ) -1 .  (3.4) 
The saddle points are determined by the condition 

which leads to the following equation 

t: = exp( i7/ 6:). (3.5) 
There is an infinite number of solutions of (3.5) but only those which have a norm 

close to unity are significant. We can express the function U(7,  i i) as a sum of 
contributions from all saddle points: 

(3.6) 

where 

f ( x , )  = i ~ x ,  + xf  - 1 

g(x,) = 1 + (i7/2xs) 

xf  = exp(iT/x,) 

x, = sf. 
It can be found that revivals occur when T = 7 k  = 2nk and that the kth saddle point 
x, = 1 dominates in the sum (3.6). If we follow Yo0 et a1 (1981) and introduce a local 
time & k  

E A  = ~ - 2 ~ k  (3.7) 
the function (3.6) can be rewritten 
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where 

P Filipowicz 

In figures 1 and 2 we plot evolution of the inversion together with the accuracy of the 
method for ii = 15 and evolution of the density matrix p for = 50. 

1, L 

h 

50 

c 

-1 I . . . . , . . . . , . . . . , . . . . , . . . . , . . . . , . . . . , . . . . , . . . . , . . . . !  
0 2n 4n 617 8n 10n 

T 

Figure 1. Expectation value of inversion (S,) as a function of the dimensionless interaction 
t i m e 7 f o r  f i = l S a n d A = O .  

O2 1 

0 20 40 60 80 100 
Photon  number 

Figure 2. Evolution of the diagonal elements of field density matrix p, for ti = 50 and A = 0. 
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Corresponding results can also be found when the atom is out of resonance. The 
integral representation of the sum 

x f i n  

n .  
~ ( t ,  i i )  =e-‘ C 7 exp[it(n + i i ~ ~ ) ” ’ ]  

where the detuning A is scaled by Jfi, is equal to 

(3.9) 

U ( T ,  f i )  =2($)’12 1 e x p ( f i [ i r ~ ’ + ( i ~ / . $ ~ ) A ~ t e x p ( i ~ / ~ ‘ ) - l ] }  d t .  (3.10) 
P 

The estimate obtained by the saddle point method gives 

where 

f(x,)  = irx,( 1 + A’/x;) + xf - - 1 

g(xJ  = 1 +- i r  ( 1 -- t;) 
2 XS 

xt = AZ+exp(i.i/x,). 

The kth saddle point for T = T~ = 2 r k (  1 + A2)”’ is equal to (1 + A2)”2.  
It is interesting to see the connection between (3.6) and the equation 

a’ a 
- U (  t ,  f i )  = - f iU( t ,  f i )  - fi- U ( ? ,  3 )  
at’ af i  

(3.11) 

(3.12) 

which is satisfied by the function (3.1). If we seek the solution of (3.12) in the form 

it satisfies equation (3.12) when 

(3.13) 

(3.14) 

The functions f ( ~ )  and g ( r )  described in (3.6) are the solutions of (3.14) when the 
last term is neglected. This is justified when the mean number of photons ii is large 
enough. Nevertheless, (3.13) includes only the first collapse and there is no obvious 
reason to include all the other revivals. 

4. The thermocoherent field 

In order to observe revivals one must deal with real final Q resonators and prepare a 
coherent-type field for each monitoring atom. Here we consider such a resonator 
driven by an external field, through which a beam of two-level atoms is injected at a 
flux low enough so that the field can reach the steady state during its damping time. 
We also assume that the coupling of the atoms to the cavity is sufficiently strong that 
the damping of the field and driving external field during the interaction can be 
neglected. Under these assumptions the evolution of the inversion of each atom can 
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be described by JCM with the field being initially prepared in the state which is the 
steady state solution of the following equation describing the field evolution in the 
cavity at non-zero temperature driven by external sources: 

(4.1 ) b = -i[fLt, PI + LP 

where the Liouville operator L acting on p gives 
A i  

Lp = iy (  n h +  1)[2apa - a ap -paLa]  +;ynh[2aTpa  - aa'p -paa t ]  

and  the various symbols have their usual meanings: HI,, = iAj( a - a ') = i y G (  a - u t ) ,  
the interaction Hamiltonian for the external driving field, y is the damping constant 
of the cavity, n h  is the average black-body photon number in the stationary state 
without interaction,j is the external current, A is the coupling constant and  f i  = ( A j / y ) *  
is the mean photon number in the stationary state at zero temperature. It is possible 
to find the steady state solution of (4.1) by transforming the density matrix p by a 
unitary displacement operator U :  

- 
pL' = upu-l u = e x p [ J A ( a  -aA)].  (4.2) 

The transformed density matrix p u  satisfies a master equation without the interaction 
term. The steady state solution is the Boltzmann distribution: 

1 
Tr[exp( -pats)] exp( -pa&a)  (4.3) PL = 

where 

e-' = n h /  ( 1  + n h ) .  

Finally the steady state solution of equation (4.1) has the following form: 
- - 

exp[ -p (a7 - J f i ) ( a  - J A ) ] .  1 
Tr[exp(-pa 'a ) ]  

p = u - ' p u u  = (4.4) 

We are interested only in the diagonal elements of p in the occupation number 
representation. After performing some algebra the diagonal elements are equal to 

At zero temperature (4.5) tends to a Poissonian distribution with the mean equal to A :  

pn = e-"fi"/n !. (4.6) 
The calculations of mean photon number and deviation for distribution (4.5) give 

(a ia)=nb+f i  
(4.7) 

(+ = ( ( ( a ' a ) ' ) ) - ( a T a ) ' ) " ' =  [fi(2nb+ I ) +  nh] ' I2 .  

From (4.7) it follows that even for nh<< f i  the distribution can be much broader than 
the Poissonian. 

We want to calculate the evolution of the inversion when the field is prepared in 
such a state, which we called the thermocoherent state. Our method developed in § 2 
can be applied here without changes. We can find the function p ( A )  for which the 
Maclaurin expansion is given by coefficients (4.5). The result is 
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Substituting (4.8) into (2.14) we obtain the following integral representation of the 
sum describing evolution of the inversion of the atom interacting with the thermofield: 

U ( t )  = 1 p n  exp(it&) 
X 

n =O 

(4.9) 
-- 2 1 exp[ L( 

l + n , ( l - E )  1 + n ,  l + n , ( l - E )  

where 

E = exp(it2/4y2). 

I f  we repeat all the steps from § 3 we obtain the approximation 

i (  ii + nb)x,7 - ii- 
M 

x { M [ 1 + -  2 i : M ( 1 c n b + G m  
, jnb E? ) ] l / ? } - l  

where 

E = e(iT/x,) M = I +  n,(I - E )  t = 27( n + n,)l 

and the saddle points satisfy the equation 

7 EE n,E 
( i i +  n,)x;  =-+-. 

M' M 

(4.10) 

Evolution of the inversion together with the accuracy of the applied method for ii = 15 
and n b  = 2 is shown in figure 3. In figure 4 we plot evolution of the photon statistics 

1 " " " " " " " ' " " " " " " " " " ' " ' " " " " " ' ' "  

1 

-1 
0 2n 4n 6n 8n 10n 

T 

Figure 3. Expectation value of inversion ( S , )  as a function of the dimensionless interaction 
t imeTfor  t i = 1 5 , n h = 2 a n d h = 0 .  
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P O ' * I  

0 

0 20 40 60 80 100 
P h o t o n  number 

Figure 4. Evolution of the diagonal elements of field density matrix p,, for A = 50, nh = 2 
and A = 0. 

for ri = 50 and  n h  = 2. Cummings collapse time is shorter and revivals are less trans- 
parent than in the coherent case illustrated in figure 1. The reason is that the photon 
distribution is much broader. 

5. Summary 

We have presented the exact integral representation of the power series (2.1). This 
representation is used to estimate the time dependence of the inversion of the atom 
when the radiation field is initially prepared in a coherent or  a thermocoherent state. 
Estimations of the integrals are made with the saddle point method. Because the 
integral representation is valid for all mean photon numbers of the field, we are able 
to discuss the range of validity of the saddle point method. If higher terms in the 
expansion of the phase function (3 .4)  in the saddle point are taken into account, one 
obtains the expression 

As was remarked, only those saddle points which have a norm close to unity are 
significant in this sum. The correction term in (5.1) is small if 7/96ri << 1 for T = 0 and 
1/8iir2<< 1 for the next revivals. These inequalities explain why the approximations 
used by Yo0 et a1 (1981) are so excellent. They are good enough even if  ri = 2!. 

For the thermocoherent case a rough estimation of (4.9) shows that for nb<< ii the 
Cummings collapse time is approximately equal 7, = 1 / { 2 ~ [ i i ( l  +2nh)]'"} and the kth 
revival is modulated by the exponential function exp{ -2ii( 7 - T ~ ) ? / [ (  1 + 2nb)7:]}. From 
the last expression it is seen that the saddle point method has drawbacks too. First, 
for large interaction times the revivals become broader and broader so for a given time 
many saddle points have to be taken into account. Second, if the distribution is so 
broad that it reaches zero photon number, an infinite number of saddle points should 
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be included independently of the interaction time and this method does not work. In 
particular it gives wrong results for a pure thermal state. 

The method developed here is quite general and can be applied for different 
distributions { p , }  if the function p ( h )  = ZF=:=, pkhk can be found. 

References 

Barnett S M and Knight P L 1985 J.  Opt. Soc. A m .  B 2 467-79 
- 1986 Phys. Reo. A 33 2444-8 
Eberly J H, Narozhny N B and Sanchez-Mondragon J J 1980 Phys. Reo. Lett. 44 1323-6 
Filipowicz P, Javanainen J and Meystre P 1986 Phys. Reo. A submitted 
Goy P, Raimond J D, Gross M and Haroche S 1983 Phys. Reo. Lett. 50 1903 
Haroche S (ed) 1984 New Trends in Atomic Physics (Les Houches, Session XXXVlrI ,  2982) (Amsterdam: 

Hioe F T, Yo0 H I and Eberly J H 1983 Coupled Nonlinear Oscillators ed J Chandra and A C Scott 

Knight P L and Radmore P M 1982 Phys. Rev. A 2 6  676-9 
Meschede D, Walther H and Muller G 1985 Phys. Reo. Lett. 54 551 
Moi I, Goy P, Gross M, Raimond J M, Fabre C and Haroche S 1983 Phys. Reo. A 27 2043-64 
Narozhny N B, Sanchez-Mondragon J J and Eberly J H 1980 Phys. Reo. A 23 236-46 
Yo0 H I and Eberly J H 1985 Phys. Rep. 118 239-337 
Yo0 H I ,  Sanchez-Mondragon J J and Eberly J H 1981 J.  Phys. A :  Math. Gen. 14 1383-97 

Elsevier) 

(Amsterdam: North-Holland) pp 95-1 13 


